شما هنوز به سایت وارد نشده اید.
چهار شنبه 11 تیر 1404
ورود به سایت
آمار سایت
بازدید امروز: 18,938
بازدید دیروز: 34,276
بازدید کل: 164,559,535
کاربران عضو: 0
کاربران مهمان: 125
کاربران حاضر: 125
Improving customer retention in financial services using kinship network information
Abstract:

This study investigates the advantage of social network mining in a customer retention context. A company that is able to identify likely churners in an early stage can take appropriate steps to prevent these potential churners from actually churning and subsequently increase profit. Academics and practitioners are constantly trying to optimize their predictive-analytics models by searching for better predictors. The aim of this study is to investigate if, in addition to the conventional sets of variables (socio-demographics, purchase history, etc.), kinship network based variables improve the predictive power of customer retention models. Results show that the predictive power of the churn model can indeed be improved by adding the social network (SNA-) based variables. Including network structure measures (i.e. degree, betweenness centrality and density) increase predictive accuracy, but contextual network based variables turn out to have the highest impact on discriminating churners from non-churners. For the majority of the latter type of network variables, the importance in the model is even higher than the individual level counterpart variable

Keywords: Network based marketing CRM Predictive analytics Social network analysis (SNA) Kinship network Financial services Random forests
Author(s): .
Source: Expert Systems with Applications 39 (2012) 11435–11442
Subject: بازاریابی
Category: مقاله مجله
Release Date: 2012
No of Pages: 8
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.